El sitio del aluminio extruído

Propiedades mecánicas

Las propiedades mecánicas o propiedades de resistencia mecánica sirven en la mayoría de los casos como base para dictaminar sobre un material metálico, con vistas a a un fin de aplicación concreto. A continuación se da un resumen de las propiedades mecánicas más importantes del aluminio no sólo sometido a esfuerzo continuo sino también , oscilante y por golpe.

 

Dureza

La  mayoría de las veces se da en los materiales de aluminio la dureza Brinell, a causa de la sencillez de su determinación. los valores de la dureza Brinell se extienden desde HB=15 para aluminio purísimo blando hasta casi HB=110 para AlZnMgCu 1,5 endurecido térmicamente, es decir, aleación 7075. Los valores de la dureza determinados por otros métodos, como el Vickers o el de Knoop, apenas tienen significado práctico en este metal. De vez en cuando se utiliza la microdureza, una variante del método Vickers, para determinar la dureza de capas anodizadas.

 

Resistencia a la compresión, a la flexión, al corte y a la torsión 

En los materiales alumínicos se puede admitir que el valor del límite de aplastamiento 0,2% ( parámetro de la resistencia a la compresión ) es igual al valor del límite elástico 0,2% de tracción. La resistencia a la compresión o el límite de aplastamiento 0,2% tienen importancia principalmente en las piezas sometidas a compresión tales como cojinetes de fricción.

 

La resistencia a la flexión en las aleaciones de aluminio se tiene en cuenta para las de fundición, en aquellos casos en que, al realizar el ensayo de tracción no es posible determinar el límite elástico con suficiente exactitud a causa de su pequeño valor.

 

La resistencia al cizallamiento es importante para el cálculo de la fuerza necesaria para el corte y para determinadas construcciones. No existen valores normalizados. Generalmente está entre el 55 y 80 % de la resistencia a la tracción.

 

Casi nunca se determina la resistencia a la torsión, si se considera una distribución lineal de tensiones, puede considerársela igual a la resistencia al cizallamiento.

 

Características de resistencia a bajas temperaturas 

El comportamiento de los metales a bajas temperaturas depende fundamentalmente de la estructura de su red cristalina. El aluminio con su red FCC ( ó CCC ) tiene la misma estructura que el cobre, el níquel o los aceros austeníticos, por eso no se presentan nunca  en las aleaciones de aluminio a temperaturas bajas las complicaciones ( rápido descenso de la resiliencia, entre otras ) que tienen lugar en los metales BCC, sobretodo en los aceros ferríticos.

 

En las dos primeras figuras se representan la variación de la resistencia a la tracción, del límite 0,2% y del alargamiento de rotura del aluminio puro a bajas temperaturas. En las siguientes tres figuras se representa la influencia de la temperatura hasta -196 C, sobre las propiedades resistentes de algunas aleaciones AlMg y AlMgMn en estado blando.

 

Resistencia a la fatiga 

La fatiga depende de una serie de factores. Además de la composición, estado y procedimiento de obtención del material, hay que considerar la clase y frecuencia de las solicitaciones y, especialmente, la configuración de los elementos constructivos ( distribución de fuerzas, tensiones máximas, superficie ). La denominación "resistencia a la fatiga" se utiliza como concepto genérico para todos los casos de solicitud alternativas.

 

Para el aluminio el límite de ciclos de carga está fijado en 10. Los ensayos se hacen casi siempre con 5 10 ciclos. Los resultados de los ensayos de fatiga alternativa presentan siempre una dispersión que no se disminuye aunque se utilicen métodos más precisos de medición. Se deben, principalmente, a contingencias casuales que intervienen al originarse la primera fisura y prosiguen en las fases iniciales de su expansión.          

 

Influencia del material. La resistencia a la fatiga se aumenta mediante la formación de soluciones cristalinas, la conformación en frío y el endurecimiento. En las aleaciones de aluminio para laminación y forja existe una clara diferencia entre las no endurecibles y las endurecibles. Esto se manifiesta en el  siguiente gráfico, donde la aleación AlMg es la no endurecible térmicamente y la AlZnMgCu es la endurecible térmicamente.

 

Mecánica de la rotura. Tenacidad

 El comportamiento en cuanto a la resistencia a la rotura de un material es importante. En los elementos de construcción se presupone que existen siempre fisuras de un determinado tamaño y que se dimensionan los elementos de tal modo que estas fisuras no sobrepasan una magnitud crítica , dentro de un período de vida previsto y sobre todo, que no aumenten de modo inestable. La carga puede ser monótona estática u oscilante. También se puede tener en cuenta la carga de fluencia ( método más apropiado para los materiales de aluminio ) o las grietas de corrosión bajo tensión.

 

El valor característico utilizado con más frecuencia es el de la tenacidad a las fisuras K , definido para el estado de tensiones uniforme como la concentración de tensiones crítica en la punta de la fisura, que ocasiona la continuación del crecimiento de la misma. Los valores altos de K significan alta tenacidad, siendo favorables, cuando también son elevados los valores de resistencia a la tracción y el límite elástico.

 

Entre los valores de resistencia habituales obtenidos del ensayo de tracción y la tenacidad a las fisuras no existe, en general, ninguna dependencia. Desde el punto de vista cualitativo, la tenacidad alas fisuras desciende al aumentar la resistencia. El objetivo de la investigación de los materiales es desarrollar los que tengan más resistencia y al mismo tiempo mayor tenacidad a la rotura.

 

Influencia de los tratamientos térmicos y mecánicos en las propiedades mecánicas

 

Deformación en frío: la resistencia a la tracción, el límite elástico 0,2% y la dureza aumentan por deformación en frío, mientras que el alargamiento a la rotura y la estricción a la rotura, disminuyen. El curso típico, en función del grado de deformación. 

 

Se reconoce en ella que el límite elástico 0,2%  sube con la deformación en frío más fuertemente que la resitencia a la tracción, aproximándose cada vez más a esta de modo que se llega casi a a una rotura por fragilidad sin deformación, lo que supone que la deformación en frío tiene sus limitaciones. El comportamiento en cuanto al aumento de resistencia por deformación en frío depende de la composición. También juegan un papel importante el estado de la estructura antes de la deformación y el tipo de deformación, la velocidad y la temperatura de trabajo.

 

Mediante la deformación en frío se pueden modificar también otras características como la conductividad eléctrica, que disminuye muy poco. La influencia de una deformación en frío sobre la resistencia a la corrosión es escasa.

 

Ablandamiento: mediante recocido a elevadas temperaturas se elimina la acritud en los metales deformados en frío, lo que supone, que el aumento de la resistencia conseguida con la deformación en frío, se puede aminorar en mayor o menor medida. Una eliminación total de la acritud hasta conseguir el estado inicial se produce cuando el recocido se realiza a temperaturas por encima del umbral de la recristalización. A temperaturas por debajo de este umbral aparece solamente una eliminación parcial del ablandamiento ( regeneración). La siguiente figura muestra una curva típica de ablandamiento basada en el curso de la curva de resistencia a la tracción, del límite elástico 0,2% y del alargamiento a la rotura para AlMg3 como función de la temperatura de recocido para una duración constante de recocido. Bajo estas circunstancias se supone que comienza la recristalización a unos 240 C. El curso exacto de la curva de ablandamiento depende, además del material, muy fuertemente del nivel de la deformación en frío sufrida. Otras magnitudes que influyen son: el tiempo de recocido, la velocidad de calentamiento y el estado de la estructura antes de la conformación, es decir, los tratamientos térmicos y mecánicos sufridos, a los que se le puede añadir el procedimiento de fundición que se haya seguido en el material de partida.             

 

Recocido de ablandamiento, estabilización: el recocido de ablandamiento sirve para transformar materiales a un estado de resistencia muy baja y alto alargamiento. Se realiza de ordinario para facilitar trabajos de conformación o para hacerlos posible. En los materiales endurecidos en frío, el recocido de ablandamiento consiste en un recocido de recristalización, habiendo de tenerse en cuenta el tamaño de grano, la duración del recocido, el nivel del grado de deformación en frío y los recocidos intermedios.

           

Normalizado: el normalizado sirve para la eliminación de tensiones propias, que pueden surgir debido a un rápido enfriamiento de las piezas al colarlas, por enfriamiento rápido después del proceso de endurecimiento o por trabajo mecánico. Debido a las tensiones propias, pueden producirse deformaciones en las piezas.

 

Las temperaturas a aplicar en el normalizado térmico son relativamente bajas, ya que de otro modo hay que contar con una merma de la resistencia mecánica no tolerable.

El tratamiento de normalizado es tanto más activo cuando más alta es la temperatura y más largo el tiempo de recocido, aunque deben tenerse en cuenta las posibles modificaciones permanentes de las propiedades del material. El normalizado debe realizarse siempre antes de mecanizar la pieza o al menos antes de la última operación, debido a que está ligada a una deformación permanente.

 

Recocido total, homogeneización: con los recocidos totales se pretende conseguir una eliminación de las tensiones propias del producto fundido, un equilibrio de los granos segregados y una disolución de los constituyentes estructurales eutécticos en los bordes de los mismos. Además el recocido total sirve con frecuencia para conseguir una disgregación regular de elementos disueltos en estado de sobresaturación , especialmente Mn y Fe, que influyen sobre el comportamiento en la recristalización y en la conformabilidad en caliente. Finalmente en las aleaciones endurecibles se consigue disolver los elementos de aleación que provocan el endurecimiento. Estos se depositan de nuevo, en el siguiente enfriamiento, que no suele ser rápido. Además si se realiza correctamente el proceso, la distribución tiene lugar de tal forma que, mediante un temple posterior, la disolución tiene lugar de forma rápida y total.

 

El recocido total puede colaborar, por lo tanto, a la disminución de las fuerzas necesarias para la conformación en caliente, a una tendencia hacia el ablandamiento uniforme y recocido de ablandamiento y a un mejoramiento de la conformabilidad en frío.

 

Endurecimiento por precipitación: es el tratamiento térmico más importante que se aplica a las aleaciones de aluminio. Este tratamiento eleva notablemente la resistencia mecánica de las aleaciones de aluminio endurecibles por tratamiento térmico.

 

El endurecimiento por precipitación tiene lugar, fundamentalmente en tres fases:

· Por calentamiento a temperatura elevada se disuelven en la solución sólida de aluminio la mayor parte de los componentes de la aleación, que provocan el endurecimineto ( recocido de disolución ).

· Por enfriamiento rápido, la solución sólida, enriquecida en estos componentes de la aleación se transforma, en primer lugar, en un estado sobresaturado ( temple).

Por permanencia, a la temperatura ambiente o a una temperatura más elevada, se producen precipitaciones de la solución sólida sobresaturada, que provocan un aumento de la resistencia a la tracción, del límite elástico 0,2% y de la dureza ( envejecimiento o maduración ).

 

Influencia de la solicitación 

Al juzgar los valores de la resistencia a la fatiga se ha de tener en cuenta el tipo de solicitación ( tracción, compresión, flexión alternativa o rotativa )y, ante todo, la posición de la tensión media o la relación de tensiones respectivamente. Además, se ha de observar atentamente si se da la amplitud de resistencia a la fatiga o a la máxima tensión superior.

 

Además de los anteriores factores, también influyen en la resistencia a la fatiga, los máximos de tensión o efectos de entalladura, el estado superficial y del ambiente, la soldadura y la temperatura.

 

Propiedades resistentes a temperaturas elevadas 

Al aumentar la temperatura, disminuyen la resistencia a la tracción, el límite elástico y la dureza, en tanto que, en general, aumenta el alargamiento de rotura y la estricción de rotura. El factor tiempo juega un papel esencial en la determinación de valores de resistencia para altas temperaturas. Esta influencia se exterioriza de dos maneras:

 

Cambios de estado

Bajo la influencia de temperaturas elevadas se pueden producir modificaciones permanentes en la estructura de los materiales que han experimentado endurecimineto por deformación en frío, estas traen consigo una disminución de la resistencia mecánica.

 

Procesos de fluencia

A temperaturas elevadas el material puede experimentar deformaciones lentas bajo la acción de cargas en reposo, aumentando la velocidad en el cambio de forma con el incremento de la temperatura y de la tensión. Al mismo tiempo pueden surgir tensiones por debajo de la resistencia a la tracción o del límite elástico 0,2%.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resistencia al desgaste

La resistencia a la abrasión o al desgaste de los materiales de aluminio es particularmente baja en el rozamiento en seco. No existe relación entre dureza y resistencia mecánica por un lado y resistencia a la abrasión por el otro.

Los materiales de aluminio sometidos a rozamiento, en determinadas circunstancias de funcionamiento, muestran un comportamiento aceptable como prueban las numerosas aplicaciones que tienen en cojinetes de fricción y émbolos. Debe mencionarse también que el desgaste se puede reducir drásticamente por un tratamiento superficial apropiado.